

PCI Bus Binding to:

IEEE Std 1275-1994
Standard for Boot

(Initialization Configuration)
Firmware

Revision 2.1

Foreword by the Chairman of the IEEE 1275 Working Group

(This foreword is not a part of the Specification.)

Introduction

Firmware is the ROM-based software that controls a computer between the time it is turned on and the time the
primary operating system takes control of the machine. Firmware's responsibilities include testing and initializing
the hardware, determining the hardware configuration, loading (or booting) the operating system, and providing
interactive debugging facilities in case of faulty hardware or software.

Historical Perspective

Historically, firmware designs have been proprietary and often specific to a particular bus or instruction set archi-
tecture (ISA). This need not be the case. Firmware can be designed to be machine-independent and easily portable
to different hardware. There is a strong analogy with operating systems in this respect. Prior to the advent of the
portable UNIX operating system in the mid-seventies, the prevailing wisdom was that operating systems must be
heavily tuned to a particular computer system design and thus effectively proprietary to the vendor of that system.

The

IEEE Std 1275-1994 Standard for Boot (Initialization Configuration), Core Requirements and Practices

 (re-
ferred to in the remainder of this document as Open Firmware) specification is based on Sun Microsystem's Open-
Boot firmware. The OpenBoot design effort began in 1988, when Sun was building computers based on three
different processor families, thus OpenBoot was designed from the outset to be ISA-independent (independent of
the Instruction Set Architecture). The first version of OpenBoot was introduced on Sun's SPARCstation 1 com-
puters. Based on experience with those machines, OpenBoot version 2 was developed, and was first shipped on
SPARCstation 2 computers. This standard is based on OpenBoot version 2.

Purpose and Features of the Open Firmware Specification

Open Firmware has the following features:

Mechanism for loading and executing programs (such as operating systems) from disks, tapes, network inter-
faces, and other devices.

ISA-independent method for identifying devices "plugged-in" to expansion buses, and for providing firm-
ware and diagnostics drivers for these devices.

An extensible and programmable command language based on the Forth programming language.

Methods for managing user-configurable options stored in non-volatile memory.

A "call back" interface allowing other programs to make use of Open Firmware services.

Debugging tools for hardware, firmware, firmware drivers, and system software.

Purpose of this Bus Binding

This document specifies the application of Open Firmware to the PCI Local Bus, including PCI-specific require-
ments and practices for address format, interrupts, probing, and related properties and methods.

The core requirements and practices specified by Open Firmware must be augmented by system-specific require-
ments to form a complete specification for the firmware for a particular system. This document establishes such
additional requirements pertaining to PCI.

Revision 2.1 PCI Bus Binding to Open Firmware

iii

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Task Group Members

The following individuals were members of the Task Group that produced this document:

Ron Hochsprung, Apple Computer, Inc.

Mitch Bradley, FirmWorks (Chair, IEEE P1275 Working Group)

David Kahn, Sun Microsystems, Inc. (Vice Chair, IEEE P1275 Working Group)

TRADEMARKS

Sun Microsystems

 is a registered trademark of Sun Microsystems, Inc. in the United States and other coun-
tries.

OpenBoot

 is a trademark of Sun Microsystems, Inc.

UNIX

 is a registered trademark of UNIX System Laboratories, Inc.

SPARC

 is a registered trademark of SPARC International, Inc. Products bearing the SPARC trademark are based
on an architecture developed by Sun Microsystems, Inc.

SPARCstation

 is a trademark of SPARC International, Inc., licensed exclusively to Sun Microsystems, Inc.

All other products or services mentioned in this document are identified by the trademarks, service marks, or prod-
uct names as designated by the companies who market those products. Inquiries concerning such trademarks
should be made directly to those companies.

The latest version of this binding may be found in the Bus Supplements area of the Web page at:

http://playground.sun.com/1275

Membership in the Open Firmware Working Group is open to all interested parties. The working group meets at
regular intervals at various locations. For more information send email to:

p1275-wg@risc.sps.mot.com

Revision History

Revision 0.1 Oct. 7, 1993

First revision distributed outside of task group (the number 0.1 did
not appear on the cover).

Revision 0.2 Oct. 28, 1993

Changed the designator for 64-bit memory space from "M" to "x".
Changed the parts of the specification related to PCI-to-PCI bridges
to reflect the 0.4 bridge architecture spec.

Revision 1.0 April 14, 1994

Changed references from P1275 to Open Firmware. Changed size
of fields for I/O address representations to reflect PCI architecture.

Revision 1.1 June 28, 1994

Added 't'-bit for aliasing, and discussion of "hard-decode" cases.

Revision 1.2 August 7, 1994

Added note about DD encoding. Added new standard properties for
those of draft Rev 2.1 PCI spec. Deleted enabling of Memory space
at post-probe. Added driver encapsulation description.

Revision 1.3 September 27, 1994

Changed generated name for Subsystem, if present. Added rule for
I/O assignment. Added discussion of PCI-to-PCI bridge probing.

Revision 1.4 December 16, 1994

Added Expansion ROM address assignment, '

t

' bit for "below 1
MB".

Revision 1.5 March 20, 1995

Applied proposals 241, 242, 249, 264, 273. Added Legacy devices
section, "clock-frequency" property, clarified address assignment,
added 't' bit for relocatable I/O space.

Revision 1.6 October 12, 1995

Applied proposals 274,286, 287 and 290.

Revision 1.65 March 4, 1995

‘ Applied proposals 251, 293, 303; fixed 287 changes.

Revision 1.7 April 22, 1996

Applied proposals 308, 311, 314, 323a; added

"ranges"

 usage in-
formation. Added

open

 and

close

 notes to child nodes.

Revision 1.75 June 17, 1996

Applied changes from 4/30/96 meeting.

Revision 2.0 August 7, 1996

Applied proposals 366, 367.

Revision 2.1 August 29, 1998

Applied proposals 420 & 430.

Revision 2.1 PCI Bus Binding to Open Firmware

i

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Introduction iii
Historical Perspective iii
Purpose and Features of the Open Firmware Specification iii
Purpose of this Bus Binding iii
Task Group Members iv
1. Overview and References . 1
 1.1. References. 1
 1.2. Definitions of Terms. 1
2. Bus Characteristics . 1
 2.1. Address Spaces . 1
 2.1.1. Memory Space . 1
 2.1.2. I/O Space. 2
 2.1.3. Hard-decoded Spaces . 2
 2.1.4. Configuration Space . 2
 2.1.4.1. Bus Number: 8 bits. 3
 2.1.4.2. Device Number: 5 bits . 3
 2.1.4.3. Function Number: 3 bits . 3
 2.1.4.4. Register Number: 8 bits . 3
 2.1.4.5. "Address-less" Cycles. 4
 2.1.4.6. Low-order Address Bits . 4
 2.2. Address Formats and Representations . 4
 2.2.1. Physical Address Formats. 4
 2.2.1.1. Numerical Representation. 4
 2.2.1.2. Text Representation . 6
 2.2.1.3. Unit Address Representation . 7
 2.3. Bus-specific Configuration Variables. 8
 2.4. Format of a Probe List . 8
 2.5. FCode Evaluation Semantics . 8
3. Bus Nodes Properties and Methods . 10
 3.1. Bus Node Properties . 10
 3.1.1. Open Firmware-defined Properties for Bus Nodes. 10
 3.1.2. Bus-specific Properties for Bus Nodes . 11
 3.2. Bus Node Methods . 11
 3.2.1. Open Firmware-defined Methods for Bus Nodes. 11
 3.2.2. Bus-specific Methods for Bus Nodes . 12
 3.2.3. Configuration Access Words . 12
 3.2.3.1. Address-less Access Words . 13
4. Child Node Properties and Methods. 13
 4.1. Child Node Properties. 13
 4.1.1. Open Firmware-defined Properties for Child Nodes . 13
 4.1.2. Bus-specific Properties for Child Nodes. 14
 4.1.2.1. Standard PCI Configuration Properties . 15
 4.2. Child Node Methods. 16
5. Bus-specific User Interface Commands . 16
6. Probing PCI-to-PCI bridges . 17
7. Legacy devices . 17
8. Relationship between PCI Base Registers and Open Firmware Properties 18
9. ROM Image Format for FCode: . 18
10. Encapsulated Drivers . 18

PCI Bus Binding to Open Firmware Revision 2.1

ii

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

 10.1. Naming conventions . 19
11. Examples of "reg" and "assigned-addresses" properties. 19
 11.1. Creation of "reg" and "assigned-address" properties . 19
 11.1.1. A single 256-byte address base register, without FCode.. 19
 11.1.2. A simple VGA device, without FCode. . 20
 11.1.3. A single 256 resource, Memory and I/O accessible, without FCode 20
 11.1.4. A single 256 resource, Memory and I/O accessible, with FCode. 21
 11.2. Computing PCI addresses from "reg" and "assigned-addresses" 21
 11.2.1. Determining the address of a register of example in Section 11.1.4. 22
 11.2.2. Determining the address of a register of example in Section 11.1.2. 22
12. Use of the

"ranges"

 property. 22
13. Example of use of add-ranges check . 23

Revision 2.1 PCI Bus Binding to Open Firmware

1

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1. Overview and References

This specification describes the application of Open Firmware to computer systems that use the PCI Local bus as
defined in [1] and [2].

1.1. References

[1]

IEEE Std 1275-1994, IEEE Standard for Boot (Initialization Configuration) Firmware: Core Practices and
Requirements

, published by IEEE.

[2]

 PCI Local Bus Specification, Revision 2.1, June 1, 1995

, published by the PCI Special Interest Group.

[3]

PCI-to-PCI Bridge Architecture Specification, Revision 1.0 April 5, 1994

 , published by the PCI Special In-
terest Group.

[4]

Open Firmware Recommended Practice: Generic Names

, published by the Open Firmware Working Group.

1.2. Definitions of Terms

bus controller:

 a hardware device that implements a PCI bus.

hard decode:

 a decoding which is not based upon a base register, but, rather, is fixed.

PCI device:

 a hardware device that connects to or "plugs in" to a PCI bus.

PCI function:

 one of a number of logically-independent parts of a PCI device. Many PCI devices have only
one function per device; in such cases, the terms "PCI function" and "PCI device" can be used interchangeably.

PCI-to-PCI bridge:

a hardware device that is, from an electrical standpoint, a single PCI function on one
PCI bus (the "parent" bus) and the bus controller of a secondary PCI bus (the "child" bus).

PCI domain:

 a group of PCI buses connected together in a tree topology by PCI-to-PCI bridges.

relocatable region:

 a range of PCI address space whose base address is established by a single base address
register.

Master PCI bus:

 within a PCI domain, the PCI bus that forms the root of the tree structure.

bus node:

 an Open Firmware device node that represents a bus controller. In cases where a node represents
the interface, or "bridge", between one bus and another, the node is both a bus node relative to the bus it controls,
and a child node of its parent bus. Note that an Open Firmware device node is not in itself a physical hardware
device; rather, it is a software abstraction that describes a hardware device.

child node:

 an Open Firmware device node that represents a PCI function. Such a node can correspond to
either a device that is "hardwired" to a planar PCI bus, or to an "add in" expansion card that is plugged into a stan-
dard PCI Expansion Connector.

2. Bus Characteristics

2.1. Address Spaces

PCI has several address spaces (Memory, I/O, Configuration), with different addressing characteristics.

2.1.1. Memory Space

Memory Space is the primary address space of PCI; it corresponds to traditional memory and "memory-mapped"
I/O. PCI allows for a full 64-bit address range in Memory Space; however, most devices will not require a full
64-bit range. In order to provide compatibility between devices designed for 64-bit addressing and those for 32-
bit addressing, the 32-bit address space appears as the first 4 GB region of the 64-bit space; i.e., 64-bit addresses
with the 32 most-significant bits equal to 0 are used to access 32-bit devices. 64-bit initiators are required to use
the 32-bit address protocol for any 64-bit address in which the upper 32 bits are all 0.

The PCI specification requires that all of a device's relocatable resources must be mappable in Memory Space, i.e.

PCI Bus Binding to Open Firmware Revision 2.1

2

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

it is not permissible for a resource to be mappable only in I/O Space (described below).

The regions of Memory Space to which a PCI device responds are assigned dynamically during system initializa-
tion, by setting device base address registers in Configuration Space (see below). The size of each such region
must be a power of two, and the assigned base address must be aligned on a boundary equal to the size of the re-
gion.

The encoding of the base address registers for Memory Space allows a resource to require address allocation with-
in the first 1 MB. This requirement is reflected in the

"reg"

 property entry for that base register by having the

't'

 bit set.

Memory Space addressing is "flat" across a PCI domain, in that addresses are not transformed as they cross PCI-
to-PCI bridges. The flat address space is not necessarily limited to a single PCI domain; the PCI design attempts
to make it possible to have a flat address across multiple PCI domains that are peers of one another on a higher-
level host address bus.

2.1.2. I/O Space

I/O Space is similar to Memory Space, except that it is intended as to be used with the special "I/O access" instruc-
tions that some processors have. As with Memory Space, I/O Space addresses are assigned dynamically during
system initialization, and the addressing is "flat" across a PCI domain.

Relocatable I/O Space

shall

 be allocated at addresses of the form

aaaa.aaaa.aaaa.aaaa.aaaa.aa00.aaaa.aaaa

. This guarantees that relocatable I/O addresses will not conflict
with hard-decoded address that have non-zero bits in AD[9…8]. Some PCI-to-PCI bridges restrict I/O address
space to 16 bits, thus, relocatable I/O space behind such a bridge shall be of the form:

0000.0000.0000.0000.aaaa.aa00.aaaa.aaaa.

Note: although the PCI specification allows 32-bit I/O Space addresses, many of the processors that have special
I/O access instructions present only a 16-bit I/O address. However, Open Firmware allows for the specification
of the full 32-bit range.

PCI also allows devices to have I/O base address registers that implement only the low-order 16 bits. I.e., the
upper 16 bits are assumed to be 0. When probing, after writing all 1s, the data read back will have the high-order
16 bits equal to 0, while the low-order 16 bits will reflect the address space requirement. Address space for such
a base register must be allocated within the first 64 KB of I/O Space. This requirement is reflected in the

"reg"

property for that base register by having the

't'

-bit set. This is interpretation of the

't'

-bit for I/O Space is
distinquished from the "alias" case by having the

'n'

-bit equal to 0 in its

"reg"

 entry; the corresponding

"as-
signed-addresses"

 entry

shall

 have the

't'

-bit equal to 0.

2.1.3. Hard-decoded Spaces

PCI allows devices to "hard-decode" Memory and I/O addresses; i.e., the addresses are not subject to relocation
via a base register. These address ranges are represented by having the non-relocatable bit (

'n'

) set in their cor-
responding

"reg"

 and

"assigned-addresses"

 properties, where the base-register field of the

phys.hi

 is 0.

Furthermore, such devices are allowed to "alias" their hard-decoded I/O addresses by ignoring all but the lower
10 bits of an I/O address. To conserve

"reg"

 property space, a bit (the

't'

-bit, for ten-bit) is included in the
encoding of hard-decoded (non-relocatable,

'n'

-bit = 1) I/O address

"reg"

 and

"assigned-addresses"
entries to indicated that the address range includes all such aliases.

2.1.4. Configuration Space
Configuration Space is used primarily during device initialization. Each device contains a set of Configuration
Registers which are used to identify and configure the device. Configuration Cycles access a device's Configura-
tion Registers, including the "address base registers" which must be initialized before the device will respond to
Memory and I/O Space accesses.

In contrast to Memory and I/O Space addressing, Configuration Space addressing is effectively "geographical",
in that the Configuration Space address of a particular device is determined by its physical location on a PCI bus

Revision 2.1 PCI Bus Binding to Open Firmware

3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

(i.e. the slot in which it is installed), or more generally, its physical location within a "tree" of interconnected PCI-
to-PCI bridges.

The method for generating Configuration Cycles is system-dependent. In some systems, special registers are used
to generate Configuration Space cycles. In other systems, Configuration Space might be memory-mapped as a re-
gion within a large physical address space. In particular, the hardware method for specifying the Bus Number and
Device Number is system-dependent. Bus Number and Device Number are described below as though they are
binary-encoded fields within an address; in practice, that is not necessarily true at the hardware level. However,
the representation described below is adequate as an internal software representation, because it is capable of rep-
resenting the entire possible space of PCI Configuration Space addresses.

A Configuration Space address consists of several fields:

2.1.4.1. Bus Number: 8 bits.

Each PCI bus within a PCI domain is assigned a unique identifying number, known as the "bus number". The
assignments occur during system initialization, when the bus controllers for the PCI buses within the PCI domain
are located. The bus number for a particular bus is written into a register in that bus's bus controller.

During a Configuration Cycle, each bus controller compares the bus number field of the address to its assigned
bus number. If they match, the bus controller selects one of the devices on its PCI bus, according to the value of
the Device Number field. Otherwise, the bus controller either forwards the configuration cycle to its subordinate
PCI-to-PCI bridges (if the bus number is for one of its subordinate bridges) or ignores the cycle.

2.1.4.2. Device Number: 5 bits

During a Configuration Cycle, the bus controller selected by the bus number field decodes the Device Number
field, activating the single corresponding "IDSEL" device select line to enable one of the PCI devices on that bus.
For PCI buses with plug-in slots, the Device Number field effectively selects a particular slot. Electrical limita-
tions restrict the number of devices on an individual PCI bus to fewer than the 32 that could otherwise be selected
by this 5-bit field.

Some PCI bus controllers use the same physical wires for the IDSEL lines and higher-numbered address lines,
thus, on the bus that is selected by the bus number field, the Device Number does not appear on the address bus
in its 5-bit binary-encoded form. Rather, the 5-bit field is decoded to a "one of n" select that asserts exactly one
upper address line. This fact does not affect the logical representation of the Device Number as a 5-bit binary-
encoded field.

Note: the decoding mechanism (e.g., the address bit selected) from the Device Number is system dependent. Fur-
thermore, the implementation of the Open Firmware config-xx words can "hide" this detail. However, it is
recommended that an Open Firmware implementation choose a numbering which is meaningful to the user.

2.1.4.3. Function Number: 3 bits

Each PCI device can have from one to eight logically-independent functions, each with its own independent set
of configuration registers. A PCI device that is selected during a Configuration Cycle decodes the Function Num-
ber field to select the appropriate set of configuration registers for that function. The assignment of Function Num-
bers to particular functions is a hard-wired characteristic of the individual PCI device. For a PCI device with only
one function, the Function Number must be zero.

2.1.4.4. Register Number: 8 bits

The register number field, decoded by the PCI device, selects a particular register within the set of configuration
registers corresponding to the selected function. The layout (locations and meanings of particular bits) of the first
few configuration registers (i.e. those with small register numbers) is specified by the PCI standard; other config-
uration registers are device-specific. The standard configuration registers perform such functions as assigning
Memory Space and I/O Space base addresses for the device's addressable regions.

In many PCI hardware implementations, Configuration Space does not appear as a direct subset of the system's
physical address space; instead, Configuration Space accesses are performed by a sequence of reads or writes to
special system registers.

PCI Bus Binding to Open Firmware Revision 2.1

4

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

2.1.4.5. "Address-less" Cycles

In addition to these address spaces, PCI has two types of transactions in which the address bus is not used. Special
Cycles (writes) are "broadcast" cycles in which the data conveys all of the information. Interrupt Acknowledge
Cycles (reads) are intended to support interrupt control hardware associated with PCI devices. The PCI specifi-
cation does not specify the details of such interrupt control hardware.

2.1.4.6. Low-order Address Bits

The address characteristics described above do not take into account the way that the PCI bus uses the least-sig-
nificant two address bits. In general, at the hardware level, the PCI bus uses the two low address bits (AD[1::0])
not to identify the particular byte to be accessed, but instead to convey additional information about the data trans-
fer, such as the type of address incrementing for burst transfers. The bytes are selected with "byte enable" signals.

That hardware subtlety is irrelevant for the purposes of this specification; within the Open Firmware domain, ad-
dresses identify individual 8-bit, 16-bit, and 32-bit registers or memory locations in the usual way. Within this
document, "address" refers to that software view of an address, which in the case of the two lower address bits is
not necessarily the same as what is on the PCI address wires.

2.2. Address Formats and Representations

2.2.1. Physical Address Formats

2.2.1.1. Numerical Representation

(The Numerical Representation of an address is the format that Open Firmware uses for storing an address within
a property value and on the stack, as an argument to a package method.) The numerical representation of a PCI
address consists of three cells, encoded as follows. For this purpose, the least-significant 32 bits of a cell is used;
if the cell size is larger than 32 bits, any additional high-order bits are zero. Bit# 0 refers to the least-significant bit.

 Bit# 33222222 22221111 11111100 00000000
 10987654 32109876 54321098 76543210

phys.hi cell: npt000ss bbbbbbbb dddddfff rrrrrrrr
phys.mid cell: hhhhhhhh hhhhhhhh hhhhhhhh hhhhhhhh
phys.lo cell: llllllll llllllll llllllll llllllll

where:

n is 0 if the address is relocatable, 1 otherwise
p is 1 if the addressable region is "prefetchable", 0 otherwise
t is 1 if the address is aliased (for non-relocatable I/O), below 1 MB (for Memory),

or below 64 KB (for relocatable I/O).
ss is the space code, denoting the address space
bbbbbbbb is the 8-bit Bus Number
ddddd is the 5-bit Device Number
fff is the 3-bit Function Number
rrrrrrrr is the 8-bit Register Number
hh…hh is a 32-bit unsigned number
ll…ll is a 32-bit unsigned number

When the hh…hh and ll…ll fields are concatenated to form a larger number, hh…hh is the most significant por-
tion and ll…ll is the least significant portion.

The 'p' bit reflects the state of the "P" bit in the corresponding hardware Base Address register.

Revision 2.1 PCI Bus Binding to Open Firmware

5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Encoding of type code "ss":

00 denotes Configuration Space, in which case:
n must be zero
p must be zero
t must be zero

bbbbbbbb ,ddddd ,fff ,rrrrrrrrr is the Configura-
tion Space address
hh…hh,ll…ll must be zero

01 denotes I/O Space, in which case:
p must be zero
t is set if 10-bit aliasing is present (for non-relocatable),

or below 64 KB required (for relocatable).
bbbbbbbb ,ddddd ,fff ,rrrrrrrr identifies the region's Base Address Register

rrrrrrrr can be 0x10, 0x14, 0x18, 0x1c, 0x20 or
0x24 (for relocatable).
rrrrrrrr is 0x00 for non-relocatable

hh…hh must be zero
 If n is 0: ll…ll is the 32-bit offset from the start of the relocatable region

of I/O Space
 If n is 1: ll…ll is the 32-bit I/O Space address

10 denotes 32-bit-address Memory Space, in which case:
p may be either 0 or 1
t is set if an address below 1 MB is required
bbbbbbbb ,ddddd ,fff ,rrrrrrrr identifies the relocatable region's Base Address Register

rrrrrrrr can be 0x10, 0x14, 0x18, 0x1c, 0x20, 0x24,
0x30 (relocatable)
rrrrrrrr is 0x00 for non-relocatable

hh…hh must be zero
 If n is 0: ll…ll is the 32-bit offset from the start of the relocatable region

of 32-bit address Memory Space
 If n is 1: ll…ll is the 32-bit Memory Space address

11 denotes 64-bit-address Memory Space, in which case:
p may be either 0 or 1
t must be 0
bbbbbbbb ,ddddd ,fff ,rrrrrrrr identifies the first register of the relocatable region's

Base Address Register pair. rrrrrrrr can be 0x10,
0x14, 0x18, 0x1c, or 0x20

 If n is 0: hh…hh,ll…ll is the 64-bit offset from the start of the relocatable region
of 64-bit address Memory Space to the start of the subre-
gion

 If n is 1: hh…hh,ll…ll is the 64-bit Memory Space address

Note: Although the bit format of the phys.hi cell is generally consistent with the bit format of a particular kind of
hardware mechanism for Configuration Space access that is recommended by the PCI standard, the use of that
format does not imply that the hardware must use the same format. The numerical representation specified herein
contains the information needed to select a particular hardware device, specifying the format by which that infor-
mation is communicated among elements of Open Firmware firmware and client programs. A driver for a par-
ticular PCI bus hardware implementation is free to extract that information and reformat as necessary for the
hardware.

Note: Although the PCI Local Bus Specification defines both prefetchable and non-prefetchable 64-bit-address
Memory Space, the PCI-to-PCI Bridge Architecture Specification does not specify a standard means of supporting
non-prefetchable 64-bit-address Memory Space across PCI-to-PCI bridges.

PCI Bus Binding to Open Firmware Revision 2.1

6

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

2.2.1.2. Text Representation

The text representation of a PCI address is one of the following forms:
DD
DD,F
[n]i[t]DD,F,RR,NNNNNNNN
[n]m[t][p]DD,F,RR,NNNNNNNN
[n]x[p]DD,F,RR,NNNNNNNNNNNNNNNN

where:
DD is an ASCII hexadecimal number in the range 0…1F
F is an ASCII numeral in the range 0…7
RR is an ASCII hexadecimal number in the range 0…FF
NNNNNNNN is an ASCII hexadecimal number in the range 0…FFFFFFFF
NNNNNNNNNNNNNNNNis an ASCII hexadecimal number in the range 0…FFFFFFFFFFFFFFFF
[n] is the letter 'n', whose presence is optional
[t] is the letter 't ', whose presence is optional
[p] is the letter 'p', whose presence is optional
i is the letter 'i '
m is the letter 'm'
x is the letter 'x '
, is the character ', ' (comma)

The correspondence between the text representations and numerical representation is as follows:

DD

corresponds to a Configuration Space address with the numerical value:
ss is 00
bbbbbbbb is the parent's bus number
ddddd is the binary encoding of DD
fff is zero
rrrrrrrr is zero
hh…hh is zero
ll…ll is zero

DD,F

corresponds to a Configuration Space address with the numerical value:
ss is 00
bbbbbbbb is the parent's bus number
ddddd is the binary encoding of DD
fff is the binary encoding of F
rrrrrrrr is zero
hh…hh is zero
ll…ll is zero

[n]i[t]DD,F,RR,NNNNNNNN

corresponds to a relocatable (if 'n' is not present) or a non-relocatable (if 'n' is present) 32-bit
I/O Space address with the numerical value. If 't ' is present, only the low-order 10 bits of an
I/O address range is indicated; aliases are assumed for all high-order bits. The numerical value
is:

ss is 01
bbbbbbbb is the parent's bus number
ddddd is the binary encoding of DD
fff is the binary encoding of F
rrrrrrrr is the binary encoding of RR
hh…hh is zero
ll…ll is the binary encoding of NNNNNNNN

Revision 2.1 PCI Bus Binding to Open Firmware

7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

[n]m[t][p]DD,F,RR,NNNNNNNN

corresponds to a relocatable (if 'n' is not present) or a non-relocatable (if 'n' is present) 32-bit
Memory Space address. If 't ' is present, the address is within the first 1 MB of memory address
space. The the numerical value is:

ss is 10
bbbbbbbb is the parent's bus number
ddddd is the binary encoding of DD
fff is the binary encoding of F
rrrrrrrr is the binary encoding of RR
hh…hh is zero
ll…ll is the binary encoding of NNNNNNNN

[n]x[p]DD,F,RR,NNNNNNNNNNNNNNNN

corresponds to a relocatable (if 'n' is not present) or a non-relocatable (if 'n' is present) 64-bit
Memory Space address with the numerical value:

ss is 10
bbbbbbbb is the parent's bus number
ddddd is the binary encoding of DD
fff is the binary encoding of F
rrrrrrrr is the binary encoding of RR
hh…hh,ll…ll is the binary encoding of NNNNNNNNNNNNNNNN

Conversion of hexadecimal numbers from text representation to numeric representation shall be case-insensitive,
and leading zeros shall be permitted but not required.

Conversion from numeric representation to text representation shall use the lower case forms of the hexadecimal
digits in the range a…f, suppressing leading zeroes, and the DD form shall be used for Configuration Space ad-
dresses where fff is zero.

2.2.1.3. Unit Address Representation

As required by this specification's definition of the "reg" property, a function's "unit-number" (i.e. the first com-
ponent of its "reg" value) is the Configuration Space address of the function's configuration registers. Since the
"unit-number" is the address that appears in an Open Firmware 'device path', it follows that only the DD and
DD,FF forms of the text representation can appear in a 'device path'.

Note: Since the predominant use of the text representation is within 'device paths', text representations of I/O and
Memory Space addresses are rarely seen by casual users.

Note: The bus number does not appear in the text representation. If the bus number were present, then the path-
name of a particular device would depend on the particular assignment of bus numbers to bus controllers, so the
pathname could change if PCI-to-PCI bridges were added or removed from other slots. (It is generally undesir-
able for the pathname of a particular device to depend on the presence or absence of other devices that are not
its ancestors in the device tree.) The combination of a device node's position in the device tree, its Device Number
and its Function Number uniquely select an individual function based on physical characteristics of the system,
so the function's pathname does not change unless the device is physically moved.

Note: The bus number appears in the numerical representation because that makes it easier to implement Con-
figuration Space access methods. The decode-unit method automatically inserts the bus number in the nu-
merical representation; it can do so because each bus node knows the bus number of the bus it represents.

Open Firmware implications:

Since some processors cannot generate I/O cycles directly, I/O Space accesses must be done with the register ac-
cess words (e.g., rb@ , rw!).

It is recommended that a range of virtual addresses be set aside for use by map-in to I/O Space devices so that the
register access words can determine when an I/O cycle needs to be generated.

Since Configuration Space often does not appear as a subset of the system's physical address space, this firmware
specification provides bus-specific methods to access Configuration Space. Likewise, it provides methods for

PCI Bus Binding to Open Firmware Revision 2.1

8

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Special Cycles and Interrupt Acknowledge Cycles.

2.3. Bus-specific Configuration Variables
An Open Firmware-compliant User Interface on a system with a single built-in PCI bus may implement the
following PCI-specific Configuration Variable.

pci-probe-list (-- list-str list-len) N
Holds list of slots to probe with probe-pci .

A configuration variable containing a string, formatted as described in the following section, indicating the set of slots
that will be probed when probe-pci is executed. The maximum length shall be sufficient to contain a string listing all
of the PCI bus's implemented slots.
Configuration Variable Type : string
Default value : a system-dependent value that includes all available slots, in numerically-ascending order.
Note: pci-probe-list is intended for the common case of a system with a single built-in PCI bus. On systems with
multiple PCI buses, fine-grained control over the probe order can be achieved by repeated execution of the probe-self
method within individual bus nodes. In any case, the ability to control the probe order is primarily intended as a conve-
nience when debugging faulty expansion cards. Normally, the default probe order (all available slots) is used.

2.4. Format of a Probe List
A PCI probe list is a text string consisting of a series of lower-case hexadecimal numbers separated by commas.
Each number is in the range 0…1F, corresponding to the slot with the same Device Number. For a given PCI bus
implementation, only the numbers corresponding to existing slots are valid.

The first number in the series specifies the first slot to be probed, and so on.

2.5. FCode Evaluation Semantics
The Open Firmware driver for a PCI domain shall probe its plug-in slots according to the following algorithm.

Enter "probe state", thus affecting subsequent behavior of the map-in and map-out methods.
Scan all slots in numerical order. For each slot, read the header type field in the configuration register set for function
number 0. If the header type field indicates a PCI-to-PCI bridge, perform the function described in the Probing PCI-to-
PCI bridges section. If the header type field indicates a multi-function device, perform the following sequence for each
of the functions that are present (as determined by the presence of a non-FFFFh value in the Vendor ID field of the func-
tion's Configuration Space header). Otherwise, perform the following sequence for the card's function number 0. The
first attempted access to each function shall use lpeek , because in some systems an attempted access to a non-existent
device might result in a processor exception (e.g. a "bus error").
Note: Although some PCI implementations will not generate processor exceptions for aborted cycles, that is not an in-
herent limitation of PCI itself, but instead an implementation choice that is appropriate for some system architectures. A
PCI host bridge knows if it terminated a cycle with a master abort. Since the PC system architecture lacks the notion of
a bus error, PC to PCI host bridges cannot report a bus error to the PC, so they have to complete the cycle and return
all ones to the x86 processor. However, in a non-PC system, the PCI host bridge could terminate the processor cycle
with a bus error. Open Firmware peek and poke can behave in their normal way; if the processor can get a bus error,
peek and poke can report it. If not, peek and poke will never say they got a bus error, they will just return whatever
data the cycle yielded. This is not a problem, because the probing process involves doing a peek and also looking at the
data to see if it is right.
Create the following properties from the information given in the configuration space header.

"vendor-id"

"device-id"

"revision-id"

"class-code"

"interrupts"

"min-grant" (Unless Header Type is 01h)
"max-latency" (Unless Header Type is 01h)
"devsel-speed"

"fast-back-to-back"

"subsystem-id"

"cache-line-size"

"subsystem-vendor-id"

"66mhz-capable"

"udf-supported"

Revision 2.1 PCI Bus Binding to Open Firmware

9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Note: The feasibility of automatically creating the above properties depends on the ability to recognize the config-
uration header format. At present, there are two such formats - the base format defined by the PCI Local Bus Spec-
ification and the PCI-to-PCI bridge format defined by the PCI-to-PCI Bridge Architecture Specification. Those two
formats are almost, but not entirely, consistent with respect to the fields defined above (in particular, the max-latency
and min-grant fields have a different meaning in the bridge header format). If additional formats are defined in the
future, then it is possible that firmware written before those formats are defined will not be able to recognize them.
The question arises: Should the firmware assume that, with respect to the above fields, new formats are consistent
with the existing ones, creating the properties without regard to header type, or should the firmware do nothing if it
sees an unrecognized header type. The latter is, in some sense, safer, but it also precludes forwards compatibility,
which is a serious deficiency.

Then determine whether or not the function has a expansion ROM image containing an FCode Program.
Note: The location of the Expansion ROM Base Address Register differs between the two currently-defined header
types. Where will it be in future header types? Furthermore, the details of Expansion ROMs on PCI-to-PCI bridges
are not specified by the current revision of the PCI-to-PCI bridge spec.

If the function has an FCode Program, evaluate the FCode Program as follows:
Copy the FCode program from expansion ROM into a temporary buffer in RAM and evaluate it as with byte-load .
(The temporary RAM buffer may be deallocated afterwards.) Set the "fcode-rom-offset" property to the offset
of the ROM image at which the FCode was found.
When the FCode Program begins execution, my-address and my-space together return the Configuration Space
address of the device's configuration register set.

Note: Since the phys.mid and phys.lo components of Configuration Spaces addresses must be zero, my-ad-
dress returns a pair of zeros; the interesting phys.hi information, which is necessary for accessing the config-
uration registers via the config-xx methods, is returned by my-space .

The FCode Program is responsible for creating the "name" and "reg" properties.
If the function does not have an FCode Program:

Create the following properties from information in the device's Configuration Space registers:
"reg" Create the following entries, in the order shown:

• An entry describing the Configuration Space for the device.
• For each active base address register, in Configuration Space order, an entry describing the entire space

mapped by that base address register (or, register pair). The phys-mid and phys-lo components of these
entries are to be zero, and the size components are to be derived by probing the base address register (or
register pair).

• If the device's expansion ROM Base Address Register indicates a non-zero size, an entry describing the
expansion ROM, constructed as for normal base address registers.

• If applicable, "legacy" entries described in section 7., in the order shown.
Note: Without FCode, it is not possible to determine whether or not there are multiple base address reg-
isters mapping the same resource, so it is not possible to create an "alternate-reg " property.
Note: the number of active base address registers depends in part on the header type configuration field;
in particular, header types 0x01and 0x81, denoting the standard PCI-to-PCI bridge header format, have
at most two base address registers, whereas header types 0x00 and 0x80have up to seven base address
registers (including the Expansion ROM's).

"name" Based on the PCI Class Code register, pick a name from Table 1. If none apply, generate a name of the
form pci VVVV, DDDD as described below under "compatible" .

"compatible" Construct a list of names in most-specific to least-specific order. The names shall be derived from
values of the Vendor ID, Device ID, Subsystem Vendor ID, Subsystem ID, Revision ID and Class Code
bytes, and shall have the following form, and be placed in the list in the following order:

pci VVVV, DDDD. SSSS. ssss . RR (1)
pci VVVV, DDDD. SSSS. ssss (2)
pci SSSS, ssss (3)
pci VVVV, DDDD. RR (4)
pci VVVV, DDDD (5)
pciclass, CCSSPP (6)
pciclass, CCSS (7)

where:
VVVV is the Vendor ID
DDDD is the Device ID
SSSS is the Subsystem Vendor ID
ssss is the Subsystem ID
RR is the Revision ID
CC is the most-significant byte of the Class Code (base class code, at 0x0b).
SS is the second-most-significant byte of the Class Code (sub-class code, at 0x0a).
PP is the least-significant byte of the Class Code (programming interface, at 0x09).

Entries (1), (2) and (3) shall be included if and only if the Subsystem Vendor ID is non-zero.

PCI Bus Binding to Open Firmware Revision 2.1

10

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Entry (3) is supplied only for backwards compatiblity with versions of the PCI Binding prior to Revision
2.1; new OS binding mechanisms should instead use forms (1) or (2) to select a driver based on the values
of the Subsystem Vendor ID and Subsystem ID.
VVVV, DDDD, SSSS, ssss and RR are lower-case ASCII hexadecimal numbers without leading zeroes.
CC, SS and PP are lower-case ASCII hexadecimal numbers including leading zeroes.

Create the "power-consumption" property from the state of the PRSNT1# and PRSNT2# pins of the connector,
if possible.

Disable fixed-address response by clearing the Bus Master, Memory Space and IO Space bits in the Command Register.
After all slots have been so probed, exit "probe state" and assign base addresses (by allocating the address space and set-
ting the base address register) for each distinct base address register (or register pair). The size of the allocated space for
a base register or register pair shall be the maximum of the size indicated by the base address register or register pair and
the size reported by the "reg" property. For each child node, create an "assigned-addresses" property, with entries
for each address base register (or register pair) for which an address was assigned.
On the host bus, set the Cache Line Size register for each master bridge to the system cache line size if that line size is
supported by the bridge or zero otherwise. On subordinate buses, set the Cache Line Size to the value of the Cache Line
Size register of the bridge for that bus if that line size is supported by the bridge or zero otherwise.
On each PCI bus within the domain, set the Latency Timer registers for each master to values appropriate for the other
devices on that bus, according to the values of the other device's MIN_GNT and MAX_LAT registers.
On each PCI bus within the domain, if all target devices on that bus have "fast back-to-back" capability, set the "fast back-
to-back" enable bits in the Command registers of master devices.

3. Bus Nodes Properties and Methods
Note: A PCI-to-PCI bridge is a parent of one PCI bus and a child of another. Consequently, a device node
representing a PCI bridge is both a Bus Node and a Child Node, with both sets of properties and methods.

3.1. Bus Node Properties

3.1.1. Open Firmware-defined Properties for Bus Nodes
The following standard properties, as defined in Open Firmware, have special meanings or interpretations for PCI.

Table 1: Generic Names based upon Class Code

Class
Code

"name"
Class
Code

"name"
Class
Code

"name"

000100 display 0500xx memory 0801xx dma-controller

0100xx scsi 0501xx flash 0802xx timer

0101xx ide 0600xx host 0803xx rtc

0102xx fdc 0601xx isa 0900xx keyboard

0103xx ipi 0602xx eisa 0901xx pen

0104xx raid 0603xx mca 0902xx mouse

0200xx ethernet 0604xx pci 0Axxxx dock

0201xx token-ring 0605xx pcmcia 0Bxxxx cpu

0202xx fddi 0606xx nubus 0C00xx firewire

0203xx atm 0607xx cardbus 0C01xx access-bus

03xxxx display 0700xx serial 0C02xx ssa

0400xx video 0701xx parallel 0C03xx usb

0401xx sound 0800xx interrupt-controller 0C04xx fibre-channel

Revision 2.1 PCI Bus Binding to Open Firmware

11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

"device_type" S

Standard prop-name to specify the implemented interface. prop-encoded-array: a string encoded with encode-string .
The meaning of this property is as defined in Open Firmware. A Standard Package conforming to this specification and
corresponding to a device that implements a PCI bus shall implement this property with the string value "pci" .

"#address-cells" S

Standard prop-name to define the number of cells necessary to represent a physical address.
prop-encoded-array: Integer constant 3, encoded with encode-int .
The value of "#address-cells" for PCI Bus Nodes is 3.

"#size-cells" S

Standard prop-name to define the number of cells necessary to represent the length of a physical address range.
prop-encoded-array: Integer constant 2, encoded as with encode-int .
The value of "#size-cells" for PCI Bus Nodes is 2, reflecting PCI's 64-bit address space.

"reg" S

Standard prop-name to define the package's unit-address.
For nodes representing PCI-to-PCI bridges, the "reg" property is as defined for PCI Child Nodes. The value denotes
the Configuration Space address of the bridge's configuration registers.
For bridges from some other bus to PCI bus, the "reg" property is as defined for that other bus.

"ranges" S

Standard prop-name to define the mapping of parent address to child address spaces.
This property shall be present for all PCI bus bridges. In particular, for PCI-to-PCI bridges, this property shall indicate
the settings of the mapping registers, thus representing the addresses to which the bridge will respond. For PCI-to-PCI
bridges, there shall be an entry in the "ranges" property for each of the Memory, Prefetchable Memory and/or I/O spac-
es if that address space is mapped through the bridge. If no addresses are mapped through the bridge, the "ranges"
property shall be absent.

3.1.2. Bus-specific Properties for Bus Nodes
“clock-frequency” S

prop-name, denotes frequency of PCI clock.
prop-encoded-array: An integer, encoded as with encode-int , that represents the clock frequency, in hertz, of the PCI
bus for which this node is the parent.

"bus-range" S

prop-name, denotes range of bus numbers controlled by this PCI bus.
prop-encoded-array: Two integers, each encoded as with encode-int , the first representing the bus number of the PCI
bus implemented by the bus controller represented by this node (the secondary bus number in PCI-to-PCI bridge nomen-
clature), and the second representing the largest bus number of any PCI bus in the portion of the PCI domain that is sub-
ordinate to this node (the subordinate bus number in PCI-to-PCI bridge nomenclature).

"slot-names" S

prop-name, describes external labeling of add-in slots.
prop-encoded-array: An integer, encoded as with encode-int , followed by a list of strings, each encoded as with en-
code-string .
The integer portion of the property value is a bitmask of available slots; for each add-in slot on the bus, the bit correspond-
ing to that slot's Device Number is set. The least-significant bit corresponds to Device Number 0, the next bit corresponds
to Device Number 1, etc. The number of following strings is the same as the number of slots; the first string gives the
label that is printed on the chassis for the slot with the smallest Device Number, and so on.

"bus-master-capable" S

prop-name, describes whether the device is wired to be PCI bus master capable.
prop-encoded-array: An integer, encoded as with encode-int .
The property value is a bitmask indicating whether the device is wired to be bus master capable. The bit being set implies
that the device is so wired and the bit being reset implies that the device is not so wired. The least significant bit corre-
sponds to Device Number 0, the next bit corresponds to Device Number 1, etc.

3.2. Bus Node Methods

3.2.1. Open Firmware-defined Methods for Bus Nodes
A Standard Package implementing the "pci" device type shall implement the following standard methods as de-

PCI Bus Binding to Open Firmware Revision 2.1

12

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

fined in Open Firmware, with the physical address representations as specified in section 2.1 of this standard, and
with additional PCI-specific semantics1:
open (-- okay?) Prepare this device for subsequent use
close (--) Close this previously-open device
map-in (phys.low phys.mid phys.hi size -- virt) Map the specified subregion.

PCI-to-PCI bridges pass through addresses unchanged. Consequently, a PCI-to-PCI bridge node's implementation of
map-in typically just forwards the request to its parent.
For a master PCI bus node in "probe state", if the physical address is relocatable, the map-in method shall assign a base
address and set the appropriate base address register to that address. Such "probe state" assignments are temporary and
are not necessarily valid after the corresponding map-out .

map-out (virt size --) Destroy mapping from previous map-in

PCI-to-PCI bridges pass through addresses unchanged. Consequently, a PCI-to-PCI bridge node's implementation of
map-out typically just forwards the request to its parent.
For a master PCI bus node in "probe state", if the physical address is relocatable and there are no other active mappings
within the relocatable region containing that address, the map-out method shall unassign the base address of the region,
freeing the corresponding range of PCI address space for later re-use. A Standard FCode program shall unmap (as with
map-out) all base addresses that it mapped and shall disable memory or I/O space access in the Command Register.

dma-alloc (size -- virt) Allocate a memory region for later use
dma-free (virt size --) Free memory allocated with dma-alloc
dma-map-in (virt size cacheable? -- devaddr) Convert virtual address to device bus DMA address.
dma-map-out (virt devaddr size --) Free DMA mapping set up with dma-map-in
dma-sync (virt devaddr size --) Synchronize (flush) DMA memory caches
probe-self (arg-str arg-len reg-str reg-len fcode-str fcode-len --)Interpret FCode, as a child of this node
decode-unit (addr len -- phys.lo phys.mid phys.hi) Convert text representation of address to numerical repre-

sentation
encode-unit (phys.lo phys.mid phys.hi -- addr len) Convert numerical representation of address to text repre-

sentation

Note: The PCI bus is little-endian; i.e. a byte address whose least-significant two bits are both zero uses the bus
byte lane containing the least-significant portion of a 32-bit quantity. Typically, a bridge from a big-endian bus
to a PCI bus will swap the byte lanes so that the order of a sequence of bytes is preserved when that sequence is
transferred across the bridge. As a result, the hardware changes the position of bytes within a 32-bit quantity that
is viewed as a 32-bit unit, rather than as a sequence of individually-addressed bytes. In order to properly imple-
ment the semantics of the Open Firmware register access words (e.g. rl!) , the device node for such byte-swap-
ping bridges must substitute versions of those words that "undo" the hardware byte-swapping.

3.2.2. Bus-specific Methods for Bus Nodes

3.2.3. Configuration Access Words
The methods described below have execution semantics similar (especially with respect to write-buffer flushing,
atomicity, etc.) to those of the register access words (e.g., r b@, rw!); in most implementations, these methods
will be implemented via the register access words.

The data type 'config-addr' refers to the 'phys.hi' cell of the numerical representation of a Configuration Space ad-
dress. The 'config-addr' shall be aligned to the data type of the access.
config-l@ (config-addr -- data)

Performs a 32-bit Configuration Read.

1.The method add-range is reserved and shall not be implemented in future releases of OFW. The
presence of this method in the PCI node indicates to child nodes both that the map-in method of this
bus node requires that the phys.lo address to be extracted from the "assigned-addresses" prop-
erty and that the get-inherited-property method does not return the prop-len (only the
prop-addr and false) if the property is found. The non-existence of this method indicates to child
nodes that the phys.lo address is an offset relative to the base address (when n=0) and that get-inher-
ited-property returns three stack items (prop-addr prop-len and false) if the inherited
property is found.

Revision 2.1 PCI Bus Binding to Open Firmware

13

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

config-l! (data config-addr --)
Performs a 32-bit Configuration Write.

config-w@ (config-addr -- data)
Performs a 16-bit Configuration Read.

config-w! (data config-addr --)
Performs a 16-bit Configuration Write.

config-b@ (config-addr -- data)
Performs an 8-bit Configuration Read.

config-b! (data config-addr --)
Performs an 8-bit Configuration Write.

assign-package-addresses (phandle --)
Assigns addresses (i.e., creates "assigned-addresses" property) for the child node denoted by phandle.

3.2.3.1. Address-less Access Words
intr-ack (--)

Performs a PCI Interrupt Acknowledge Cycle.

special-! (data bus# --)
Performs a PCI Special Cycle on the indicated bus# .

Note: Standard PCI-to-PCI bridges provide a mechanism for converting Configuration Cycles with particular addresses
to Special Cycles. Consequently, for a PCI-to-PCI bridge, the likely implementation of special-! involves invoking the
parent node's config-l! method.

4. Child Node Properties and Methods
Note: A PCI-to-PCI bridge is a parent of one PCI bus and a child of another. Consequently, a device node rep-
resenting a PCI bridge is both a Bus Node and a Child Node, with both sets of properties and methods.

4.1. Child Node Properties

4.1.1. Open Firmware-defined Properties for Child Nodes
The following properties, as defined in Open Firmware, have special meanings or interpretations for PCI.

"name" S

Standard prop-name, defines device’s name.
prop-encoded-array: device name, encoded as with encode-string .
For devices with FCode, the name is defined by the FCode program. In accordance with the Generic Names Recommend-
ed Practice [4], it should represent the general nature of the device.
For devices without FCode, the name is derived from the PCI Class Code, as described in section 2.5.

"compatible"

Standard prop-name, defines devices with which this device is compatible.
prop-encoded-array: The concatenation, as with encode+ , of an arbitrary number of text strings, each encoded with
 encode-string .
As defined in [1] and [4], this property lists devices with which this device is compatible.
Note 1: It is better to identify the function as a whole, instead of identifying only the "chip" that is directly connected to
the PCI bus (e.g.: use " IBM,v915" instead of " S3,928") because there may be numerous other display adapters that
use the same graphics chip, but which are not entirely compatible due to the presence of different support chips like DACs
and programmable clock generators.

Note 2: Devices with FCode may put a name of the form pciVVVV,DDDD) in " compatible" if they present the
same interface that the non-FCode algorithm (section 2.5) does.

PCI Bus Binding to Open Firmware Revision 2.1

14

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

"reg" S

Standard prop-name, defines device's addressable regions.
prop-encoded-array: Arbitrary number of (phys-addr size) pairs.
phys-addr is (phys.lo phys.mid phys.hi), encoded as with encode-phys . size is a pair of integers, each encoded as with
encode-int .
The first integer denotes the most-significant 32 bits of the 64-bit region size, and the second integer denotes the least
significant 32 bits thereof.
This property is mandatory for PCI Child Nodes, as defined by Open Firmware. The property value consists of a sequence
of (phys-addr, size) pairs. In the first such pair, the phys-addr component shall be the Configuration Space address of the
beginning of the function's set of configuration registers (i.e. the rrrrrrrr field is zero) and the size component shall
be zero. Each additional (phys-addr, size) pair shall specify the address of an addressable region of Memory Space or I/
O Space associated with the function. In these pairs, if the "n" bit of phys.hi is 0, reflecting a relocatable address, then
phys.mid and phys.lo specify an address relative to the value of the associated base register. In general this value will be
zero, specifying an address range corresponding directly to the hardware's. If the "n" bit of phys.hi is 1, reflecting a non-
relocatable address, then phys.mid and phys.hi specify an absolute PCI address.
In the event that a function has an addressable region that can be accessed relative to more than one Base Address Register
(for example, in Memory Space relative to one Base Register, and in I/O Space relative to another), only the primary ac-
cess path (typically, the one in Memory Space) shall be listed in the "reg" property, and the secondary access path shall
be listed in the "alternate-reg" property.
Note: The device FCode is free to construct the second and later pairs in any order, including or omitting references to
base address registers, hard-decoded registers, and so on. However, for compatibility between FCode and earlier non-
FCode versions of a device and between Open Firmware and non-Open Firmware systems, it is recommended that the
device FCode construct the "reg" property exactly as the platform firmware would have in the absence of device
FCode, as described in Section 2.5.

"interrupts" S

prop-name, the presence of which indicates that the function represented by this node is connected to a PCI expansion
connector's interrupt line.
prop-encoded-array: Integer, encoded as with encode-int . The integer represents the interrupt line to which this func-
tion's interrupt is connected; INTA=1, INTB=2, INTC=3, INTD=4. This value is determined from the contents of the
device's Configuration Interrupt Pin Register.

4.1.2. Bus-specific Properties for Child Nodes
Standard Packages corresponding to devices that are children of a PCI bus shall implement the following prop-
erties, if applicable.

"alternate-reg" S

prop-name, defines alternate access paths for addressable regions.
prop-encoded-array: Arbitrary number of (phys-addr size) pairs.
phys-addr is (phys.lo phys.mid phys.hi), encoded as with encode-phys. size is a pair of integers, each encoded as with
encode-int .
The first integer denotes the most-significant 32 bits of the 64-bit region size, and the second integer denotes the least
significant 32 bits thereof.
This property describes alternative access paths for the addressable regions described by the "reg" property. Typically,
an alternative access path exists when a particular part of a device can be accessed either in Memory Space or in I/O
Space, with a separate Base Address register for each of the two access paths. The primary access paths are described by
the "reg" property, and the secondary access paths, if any, are described by the "alternate-reg" property.
If the function has no alternative access paths, the device node shall have no "alternate-reg" property. If the device
has alternative access paths, each entry (i.e. each phys-addr size pair) of its value represents the secondary access path for
the addressable region whose primary access path is in the corresponding entry of the "reg" property value. If the num-
ber of "alternate-reg" entries exceeds the number of "reg" property entries, the additional entries denote address-
able regions that are not represented by "reg" property entries, and are thus not intended to be used in normal operation;
such regions might, for example, be used for diagnostic functions. If the number of "alternate-reg" entries is less
than the number of "reg" entries, the regions described by the extra "reg" entries do not have alternative access paths.
An "alternate-reg" entry whose phys.hi component is zero indicates that the corresponding region does not have an
alternative access path; such an entry can be used as a "place holder" to preserve the positions of later entries relative to
the corresponding "reg" entries. The first "alternate-reg" entry, corresponding to the "reg" entry describing the
function's Configuration Space registers, shall have a phys.hi component of zero.

"fcode-rom-offset" S

prop-name, denotes offset of FCode image within the device's Expansion ROM.
prop-encode-array: one integer, encoded as with encode-int .

Revision 2.1 PCI Bus Binding to Open Firmware

15

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

This property indicates the offset of the PCI Expansion ROM image within the device's Expansion ROM in which the
FCode image was found; i.e., the offset of the 0xAA55 signature of that image's PCI Expansion ROM Header. This value
shall be generated before the FCode is evaluated. Note that the absence of this property indicates that no FCode exists
for this device node.

"assigned-addresses" S

prop-name, denotes assigned physical addresses
prop-encoded-array: Zero to six (phys-addr size) pairs.
phys-addr is (phys.lo phys.mid phys.hi), encoded as with encode-phys . size is a pair of integers, each encoded as with
encode-int .
The first integer denotes the most-significant 32 bits of the 64-bit region size, and the second integer denotes the least
significant 32 bits thereof.
Each entry (i.e. each phys-addr size pair) in this property value corresponds to either one or two (in the case 64-bit-ad-
dress Memory Space) of the function's Configuration Space base address registers. The entry indicates the physical PCI
domain address that has been assigned to that base address register (or register pair), and the size in bytes of the assigned
region. The size shall be a power of two (since the structure of PCI Base Address registers forces the decoding granularity
to powers of two). The 'n' bit of each phys-addr shall be set to 1, indicating that the address is absolute (within the PCI
domain's address space), not relative to the start of a relocatable region. The type code shall not be '00' (Configuration
Space). The 'bbbbbbbb,ddddd,fff,rrrrrrrr ' field indicates the base register to which the entry applies, and the
'hh…hh,ll…ll ' field contains the assigned address.
If addresses have not yet been assigned to the function's relocatable regions, this property shall be absent.
The values reported in "assigned-addresses" represent the physical addresses that have been assigned. If Open
Firmware can not assign address space for a resource (e.g., the address space has been exhausted), that resources will not
have an entry in the "assigned-addresses" property. If no resources were assigned address space, the "assigned-
addresses" property shall have a prop-encoded-array of zero length.
Note: There is no implied correspondence between the order of entries in the " reg " property value and order of entries
in the " assigned-addresses " property value. The correspondence between the " reg " entries and " assigned-
addresses " entries is determined by matching the fields denoting the Base Address register.

"power-consumption" S

prop-name, describes function's power requirements
prop-encoded-array: list of integers, encoded as with encode-int , describing the device's maximum power consump-
tion in microwatts, categorized by the various power rails and the device's power-management state (standby or fully-on).
The ints are encoded in the following order:

unspecified standby, unspecified full-on, +5V standby, +5V full-on, +3.3V standby, +3.3V full-on, I/O pwr standby,
I/O pwr full-on, reserved standby, reserved full-on

The "unspecified" entries indicate that the power division among the various rails is unknown. The "unspecified" entries
shall be zero if any of the other entries are non-zero. The "unspecified" entries are provided so that the "power-con-
sumption" property can be created for devices without FCode, from the information on the PRSNT1# and PRSNT2#
connector pins.
If the number of ints in the encoded property value is less than ten, the power consumption is zero for the cases corre-
sponding to the missing entries. For example, if there are four ints, they correspond to the two "unspecified" and the two
"+5" numbers, and the others are zero.

4.1.2.1. Standard PCI Configuration Properties

The following properties are created during the probing process, after the device node has been created, but before
evaluating the device's FCode (if any). They represent the values of standard PCI configuration registers. This
information is likely to be useful for Client and User interfaces.

Unless specified otherwise, each of the following properties has a prop-encoded-array whose value is an integer
taken directly from the corresponding hardware register, encoded as with encode-int .

PCI Bus Binding to Open Firmware Revision 2.1

16

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

"vendor-id" S

"device-id" S

"revision-id" S

"class-code" S

"interrupts" S

This property shall be present if the Interrupt Pin register is non-zero,
and shall be absent otherwise.

"min-grant" S

"max-latency" S

"devsel-speed" S

"cache-line-size" S
This property shall be present if the function's cache line size register is set to a non-zero value,
and shall be absent otherwise.

"fast-back-to-back" S
prop-encoded-array: <none>
This property shall be present if the "Fast Back-to-Back" bit (bit 7) in the function's Status Register
is set, and shall be absent otherwise.

"subsystem-id" S
This property shall be present if the "Subsystem ID" register is non-zero, and shall be absent otherwise.

"subsystem-vendor-id" S
This property shall be present if the "Subsystem Vendor ID" register is non-zero,
and shall be absent otherwise.

"66mhz-capable" S
prop-encoded-array: <none>
This property shall be present if the "66 MHz Capable" bit (bit 6) in the function's Status Register
is set, and shall be absent otherwise.

"udf-supported" S
prop-encoded-array: <none>
This property shall be present if the "UDF Supported" bit (bit 5) in the function's Status Register is set, and shall be absent
otherwise.

4.2. Child Node Methods
The methods of a child node depend upon its device-type programming model. However, the standard open and
close methods for PCI devices have some PCI-specific details as described below.

open (-- true | false) S

Prepare the device for subsequent use.
Since the probing process leaves the decoding disabled for a PCI device, the device driver must explicitly enable the PCI
address spaces that it requires by setting the Memory Space and/or IO Space bits in the Command register; If the device
requires the use of bus mastering capabilities, it must also set the Bus Master bit. The setting of these bits should be done
with read-modify-write accesses to the Command register.

close (--) S

Close this previously open ed device.

The close method for a PCI device must clear the Bus Master, Memory Space and IO Space bits in its Command reg-
ister. The clearing of these bits should be done by a read-modify-write sequence to the Command register.

5. Bus-specific User Interface Commands
An Open Firmware-compliant User Interface on a system with one or more built-in PCI buses should implement
the following PCI-specific user interface commands.

Revision 2.1 PCI Bus Binding to Open Firmware

17

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

probe-pci (--)

Interprets FCode for all built-in PCI slots..
For each of the system's built-in PCI domains, perform the PCI probing algorithm as defined in section 2.5.

make-properties (--)

Create the default PCI properties (as described above for probe-pci) for the current instance.
This user interface word is intended to be used for debugging FCode within the context of begin-package … end-
package . This word should be executed before evaluating the FCode for the node.

assign-addresses (--)

Assign addresses for the current instance.
This user interface word is intended to be used for debugging Fcode within the context of begin-package … end-
package . Executing this word causes addresses to be assigned to this node (based on the current "reg" property value),
creating an "assigned-addresses" property reflecting those addresses. This word should be executed after evalu-
ating the FCode for the node.

6. Probing PCI-to-PCI bridges
The recursive algorithm described in this section allows bus number and address assignment to be done in a single
depth-first manner. Bus numbers are assigned on the way down the PCI bus hierarchy and addresses are assigned
to on the way back up. Another algorithm may be used.

Note: while this is a simple algorithm (e.g., it does not require a "global" address allocation pass), it does not
provide the most optimal system-wide address assignment.

If the function is a standard PCI-to-PCI bridge (as indicated by the class code and the header type fields), set the
bridge's Primary Bus # register to the bus number of the parent bus, assign the next bus number to that bridge,
setting its Secondary Bus # register to that number, set the bridge's Subordinate Bus # register to 0xFF , and re-
cursively scan the slots of that bridge's subordinate bus.

When that recursive scanning process returns, set the bridge's Subordinate Bus # register to the largest bus number
assigned during the recursive scan. At this point, bus numbers have been assigned to all subordinate buses, and
addresses have been assigned for all devices on the subordinate buses, for this bridge within the PCI domain.
Then, assign addresses to all devices on the Secondary Bus and set the Memory Base, Memory Limit, I/O Base
and I/O Limit registers of the bridge to their appropriate values and enable Memory and I/O transactions. Due to
the mapping characteristics of PCI-to-PCI bridges, the ranges of Memory addresses for subordinate devices shall
be aligned to 1 MB boundaries, and the ranges of I/O addresses shall be aligned to 4 KB boundaries.

After setting the Memory Base, Memory Limit, I/O Base and I/O Limit registers, create a "ranges" property that
represents the Memory and I/O mappings that have been established.

7. Legacy devices
"Legacy" VGA and IDE devices that are implemented on PCI will typically have the same "hard-decoded" ad-
dresses as they did on ISA. Such devices that have FCode can use explicit indication of their address requirements
as described above. However, for cards that have no FCode image, Open Firmware shall assume the standard
address ranges and shall create the "reg" property with these ranges, in addition to any relocatable regions that
have base registers.

For VGA devices (class-code = 0x000100 or 0x030000), the address ranges are:
0x3B0-0x3BB (I/O, aliased; t =1)
0x3C0-0x3DF (I/O, aliased; t =1)
0xA0000-0xBFFFF (Memory, below 1MB, t =1)

For IDE devices (class-code = 0x010100), the address ranges are:
0x1F0-0x1F7 Primary Command Block (I/O)
0x3F6 Primary Control Block (I/O)
0x170-0x17F Secondary Command Block (I/O)
0x376 Secondary Control Block (I/O)

PCI Bus Binding to Open Firmware Revision 2.1

18

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

8. Relationship between PCI Base Registers and Open Firmware Properties
Especially in the case of a PCI device with onboard FCode support, there is no particular relationship between PCI
base registers and the "reg" and "assigned-addresses " properties. A particular base register may or may
not be represented in "reg " and "assigned-addresses" , and those properties may contain entries referring
to addresses not controlled by any base register. No particular ordering is required in either the "reg" property
or the "assigned-addresses" property. A client wishing to make use of the addressing information pro-
vided by Open Firmware must scan the "assigned-addresses" property looking for an entry specifying the
desired base-register field in its phys.hi.

9. ROM Image Format for FCode:
Offset from start
of ROM Image Data

00h - 01h ROM signature field of ROM Header (PCI spec 6.3.1.1)

02h - 03h Pointer to FCode program. This is a 16-bit field that is the offset from the start of
the ROM image and points to the FCode Program. The field is in little-endian for-
mat. (This field is within the "Reserved for processor-unique data" field of the
ROM Header.)

04h - 17h Reserved (remainder of "Reserved for processor-unique data" field of the ROM
Header).

18h - 19h "Pointer to PCI Data Structure" field of ROM Header.

1Ah - FFFFh The PCI Data Structure (PCI spec 6.3.1.2), Vital Product Data, and FCode Pro-
gram can each begin anywhere within this range, in any order. The "Code Type"
field of the PCI Data Structure shall have the value "1".

The FCode Program is as described in Open Firmware; its size is given by the
standard Open Firmware FCode Program header. FCode bytes shall appear at
consecutive byte addresses.

10. Encapsulated Drivers
This section describes a mechanism which allows the encapsulation of run-time drivers within the standard Open
Firmware expansion ROM.

The FCode contained within a PCI card's expansion ROM provides for Open Firmware drivers for the device. To
enhance the "plug-and-play" of cards in common system platforms, it is desirable to be able to include run-time
drivers within this expansion ROM, thus eliminating the extra step of installing drivers onto the OS boot device.

The information about run-time drivers is encoded as additional standard properties within the device tree. These
properties are created by the FCode probe code of the plug-in card, and are used by the OS to locate and load the
appropriate driver. Two new properties are defined; they differ as to how the location of the run-time driver is
defined.

"driver,…" format

This property, encoded as with encode-bytes , contains the run-time driver.

This format is used when the run-time driver is contained within the FCode image, itself. The value of the prop-
erty is the encapsulated driver; the prop-addr,prop-len reported by the various "get-property" FCodes and/
or getprop Client interface call represent the location and size of the driver within the device tree's data space.
I.e., decode-bytes could be used to copy the driver into the desired run-time location.

"driver-reg,…" format

This property, encoded as with the "reg" standard property , contains a relative pointer to the run-time driver.

This format is used when the driver is not directly contained within the FCode image, but rather, is located in some
other portion of the Expansion ROM. The value is encoded in a "reg" format, where the address is relative to the
expansion ROM's base address. This format conserves device tree (and, FCode) space, but requires the OS to
perform the actions of mapping in the Expansion ROM, using the information supplied by this property and the

Revision 2.1 PCI Bus Binding to Open Firmware

19

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

"assigned-addresses" for the Expansion ROM, and copying the driver, itself.

Note: the "fcode-rom-offset" property facilitates the generation of this property within the context of the
FCode's image. The driver can be located relative to the ROM image that contains the FCode (but, does not have
to be within the FCode, itself) without regard to the location of that ROM image relative to others within the same
Expansion ROM. I.e., "self-relocating" images containing encapsulated drivers can be created that can be con-
catenated with other images without altering any data within an image (except, of course, for the Indicator to
properly indicate the last image).

10.1. Naming conventions
The complete property name for these encapsulated drivers is chosen to allow multiple drivers to co-exist within
the expansion ROM. An OS will locate its desired driver by an exact match of its property name among any such
"driver," ("driver-reg,") properties contained within the device tree for this device. The formats of the
complete names are:

"driver, OS-vendor , OS-type , Instruction-set "
"driver-reg, OS-vendor , OS-type , Instruction-set "

The OS-vendor component is as defined for device-names; i.e., organizational unique identifier (e.g., stock sym-
bol). The OS-type & Instruction-set components are defined by the OS-vendor. An example would be:

"driver-reg,AAPL,MacOS,PowerPC"

11. Examples of "reg" and "assigned-addresses" properties
The examples in these sections demonstrate the generation and use of the "reg" and "assigned-address-
es" properties for PCI devices. The first sections demonstrate how "reg" and "assigned-addresses"
properties get created while the last sections show how a Client can use the information to determine PCI address-
es of device resources.

In the following examples:
xxxx represents the bus, device, function numbers as appropriate
hhhhhhhh represents the high 32 bits of a PCI domain address
llllllll represents the low 32 bits of a PCI domain address

11.1. Creation of "reg" and "assigned-address" properties
The following sections describe several scenarios of how "reg" and "assigned-addresses" properties
would get created in various situations.

11.1.1. A single 256-byte address base register, without FCode.
This example device has a single a single 256-byte, non-prefetchable memory range and no Expansion ROM:

Base address register 0x10 :

Discovered to be present, and requiring 0x100 bytes of address space, by reading
0xFFFFFF00 after writing 0xFFFFFFFF.

Base address register 0x14 :

Not present, as discovered by reading back 0x00000000 after writing
0xFFFFFFFF.

(same for 0x18 , 0x1C, 0x20 , 0x24 , and 0x30)

"reg" property (created during probing)
phys_hi phys_mid phys_lo size_hi size_lo
00xxxx00 00000000 00000000 00000000 00000000
02xxxx10 00000000 00000000 00000000 00000100

"assigned-addresses" property (created after probing, during address assignment)

PCI Bus Binding to Open Firmware Revision 2.1

20

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

82xxxx10 00000000 llllll00 00000000 00000100

with the resulting base address registers contents:

0x10: llllll00

11.1.2. A simple VGA device, without FCode.
This example consists of a simple VGA device, with no relocatable regions and a 4K non-FCode Expansion ROM.

Base address register 0x10 :

Discovered to be not implemented by reading back a 0x00000000 after writing
0xFFFFFFFF.

(same for 0x14 , 0x18 , 0x1C, 0x20 , 0x24)

Expansion ROM base address register (0x30):

Discovered to be present, and requiring 0x1000 bytes by reading back a 0xFFFFF000
after writing 0xFFFFFFFF.

"reg" property (created during probing)
phys_hi phys_mid phys_lo size_hi size_lo
00xxxx00 00000000 00000000 00000000 00000000
02xxxx30 00000000 00000000 00000000 00001000
81xxxx00 00000000 000003B0 00000000 0000000C
81xxxx00 00000000 000003C0 00000000 00000020
82xxxx00 00000000 000A0000 00000000 00020000

"assigned-addresses" property (created after probing, during address assignment)

82xxxx30 00000000 lllll000 00000000 00001000

with the resulting base address registers:

0x30: lllll000

11.1.3. A single 256 resource, Memory and I/O accessible, without FCode
This example consists of a device that has a single resource, requiring 256 bytes of address space, but which is
accessible as either I/O or Memory mapping; i.e., it contains two address base registers, one for I/O Space and
one for Memory Space. For this example, no Expansion ROM base address register is implemented; hence, there
is no FCode.

Base address register 0x10 :

Discovered to be a Memory base address register, requiring 256 bytes of address space,
by reading back a 0xFFFFFF00 after writing 0xFFFFFFFF.

Base address register 0x14 :

Discovered to be a I/O base address register, requiring 256 bytes of address space, by
reading back a 0xFFFFFF01 after writing 0xFFFFFFFF.

Base address registers 0x18 , 0x1C, 0x20 , 0x24 and 0x30 :

Discovered to be not implemented by reading back a 0x00000000 after writing
0xFFFFFFFF.

"reg" property (created during probing)

phys_hi phys_mid phys_lo size_hi size_lo
00xxxx00 00000000 00000000 00000000 00000000
02xxxx10 00000000 00000000 00000000 00000100
01xxxx14 00000000 00000000 00000000 00000100

"assigned-addresses" property (created after probing, during address assignment)
81xxxx14 00000000 llllll00 00000000 00000100
82xxxx10 00000000 mmmmmm00 00000000 00000100

with the resulting base registers:

Revision 2.1 PCI Bus Binding to Open Firmware

21

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0x10: mmmmmm00 (a memory address)
0x14: llllll01 (an I/O address)

Note that this platform appears to allocate I/O space first, yielding an assigned-addresses property in a different
order from the reg property.

11.1.4. A single 256 resource, Memory and I/O accessible, with FCode.
The same function as in 11.4, but with 4K of FCode that reveals that the first 32 bytes of the registers are unused
and the second 32 bytes are used only for diagnostic purposes:

Base address register 0x10 :

Discovered to be a Memory base address register, requiring 256 bytes of address space,
by reading back a 0xFFFFFF00 after writing 0xFFFFFFFF.

Base address register 0x14 :

Discovered to be a I/O base address register, requiring 256 bytes of address space, by
reading back a 0xFFFFFF01 after writing 0xFFFFFFFF.

Base address registers 0x18 , 0x1C, 0x20 , 0x24 :

Discovered to be not implemented by reading back a 0x00000000 after writing
0xFFFFFFFF.

Expansion ROM base address register (0x30):

Discovered to be present, and requiring 0x1000 bytes of address space, by reading
0xFFFFF000 after writing 0xFFFFFFFF.

The Expansion ROM is discovered to contain a valid FCode image which is evaluated. This FCode creates its
own "reg" property, reflecting knowledge of the intended usage of the addressable resource.

"reg" property (created during probing by the FCode program)

phys_hi phys_mid phys_lo size_hi size_lo
00xxxx00 00000000 00000000 00000000 00000000
02xxxx10 00000000 00000040 00000000 000000C0

"alternate-reg" property (created during probing by the FCode program)

00000000 00000000 00000000 00000000 00000000
01xxxx14 00000000 00000040 00000000 000000C0 *1
02xxxx10 00000000 00000020 00000000 00000020 *2
01xxxx14 00000000 00000020 00000000 00000020 *3

 Notes:

 *1 Secondary access to operational registers
 *2 Primary access to diagnostic registers
 *3 Secondary access to diagnostic registers

"assigned-addresses" property (created after probing, during address assignment)
81xxxx14 00000000 llllll00 00000000 00000100
82xxxx10 00000000 mmmmmm00 00000000 00000100

with the resulting base registers:
0x10: mmmmmm00 (a memory address)
0x14: llllll01 (an I/O address)

11.2. Computing PCI addresses from "reg" and "assigned-addresses"

The following sections show how a device driver or Client program could use the information provided in the
"reg" and "assigned-addresses" properties.

The phrases "PCI address space" or "PCI domain" indicate an address is the PCI physical address space as used
on the PCI bus in question. This PCI physical address space is not necessarily the same as the physical address

PCI Bus Binding to Open Firmware Revision 2.1

22

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

space in which a processor would access the PCI resource. Especially in the case of PCI I/O space, host PCI bridg-
es (i.e., PCI bridges that are attached to the processor bus) may perform an address translation function. In the
following examples, another sequence of steps is, in general, necessary to determine the appropriate processor ad-
dress to use. The information necessary for these steps is contained in the "ranges" properties of bus nodes.

11.2.1. Determining the address of a register of example in Section 11.1.4.
Problem: Given the last device described in Section 11.1.4., determine the physical address associated with the
3rd byte of its operational registers.

1. Extract the second phys-addr,size pair from the "reg" property. (We know to use the second pair because
the first pair is the Configuration Space entry and the device documentation tells us that the second pair is the op-
erational registers.)

2. Note that the ’n’ bit is zero, indicating a relocatable region. Note that the rrrrrrrr field is 0x10 .

3. Search the "assigned-addresses" property for an entry with an rrrrrrrr field of 0x10 . Find the
second entry.

4. Add the phys_mid,phys_lo value from the "assigned-addresses" entry to the phys_mid,phys_lo value
(0x40) from the "reg" entry. This yields the physical base (in PCI address space) of the device's operational
registers.

5. Add this value to the desired register offset, 3. This yields the (PCI domain’s) physical address of the desired
register.

11.2.2. Determining the address of a register of example in Section 11.1.2.
Problem: Given the VGA device described above (in Section 11.1.2.), determine the PCI address associated with
the sequencer index register (I/O address 0x3C4 in the documentation).

(Of course, we could "just know" that the answer is 0x3C4 , but let's do it according to the book.)

1. Extract the fourth phys-addr,size pair from the "reg" property. (We know to use the fourth pair because the
first pair is the Configuration Space entry, the second pair is the ROM, the third pair is the monochrome I/O range,
the fourth pair is the color I/O range, and the fifth pair is the video memory.)

2. Note that the ’n’ bit is one, indicating a non-relocatable region.

3. Add the phys_mid,phys_lo values from this "reg" entry to the desired register offset, 4. This yields the phys-
ical address (in the PCI domain) of the sequencer index register.

12. Use of the "ranges" property
The "ranges" property of Open Firmware represents how address transformation is done across bus bridges.
The "ranges" property conveys this information for PCI, but the use of the property is not as straightforward
as on some other busses.

In particular, the phys.hi fields of the child address spaces in the "ranges" property for PCI does not contain
the same information as "reg" property entries within PCI nodes. The only information that is present in
"ranges" phys.hi entries are the non-relocatable, prefetchable and the PCI address space bits for which the en-
try applies. I.e., only the n, p and ss bits are present; the bbbbbbbb , ddddd , fff and rrrrrrrr fields are 0.

When an address is to be mapped through a PCI bus bridge node, the phys.hi value of the address to be mapped
and the child field of a "ranges" entry should be masked so that only the ss bits are compared. I.e., the only
portion of phys.hi that should participate in the range determination is the address space indicator (the ss bits).

Revision 2.1 PCI Bus Binding to Open Firmware

23

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

13. Example of use of add-ranges check
 \ Flag is true if the parent's map-in method doesn't work with
 \ relocatable addresses.

 : map-in-broken? (-- flag)
 \ Look for the method that is present when the bug is present
 " add-range" my-parent ihandle>phandle (adr len phandle)
 find-method dup if nip then (flag) \ Discard xt if present
 ;

 \ Return phys.lo and phys.mid of the address assigned to the PCI base address
 \ register indicated by phys.hi .

 : get-base-address (phys.hi -- phys.lo phys.mid phys.hi)

 " assigned-addresses" get-my-property if (phys.hi)
 ." No address property found!" cr
 0 0 rot exit \ Error exit
 then (phys.hi adr len)

 rot >r (adr len) (r: phys.hi)
 \ Found assigned-addresses, get address
 begin dup while (adr len') \ Loop over entries
 decode-phys (adr len' phys.lo phys.mid phys.hi)
 h# ff and r@ h# ff and = if (adr len' phys.lo phys.mid) \ This one?
 2swap 2drop (phys.lo phys.mid) \ This is the one
 r> exit (phys.lo phys.mid phys.hi)
 else (adr len' phys.lo phys.mid) \ Not this one
 2drop (adr len')
 then (adr len')
 decode-int drop decode-int drop \ Discard boring fields
 repeat
 2drop ()

 ." Base address not assigned!" cr

 0 0 r> (0 0 phys.hi)
 ;

 \ Example code to compute the phys.lo..hi arguments for "map-in", using the
 \ above functions so that the code works both on systems that implement
 \ map-in according to the PCI binding document, and also on systems whose
 \ PCI map-in method requires phys.lo,phys.mid to contain the assigned base
 \ address.

 \ Compute entire phys.lo..hi address for base address register 10
 map-in-broken? if
 my-space h# 8200.0010 + get-base-address (phys.lo,mid,hi)
 else
 0 0 my-space h# 200.0010 + (phys.lo,mid,hi)
 then (phys.lo,mid,hi)

 \ An FCode driver that need not work on systems with the map-in bug could
 \ use the following code, omitting the definitions of "map-in-broken?"
 \ and "get-base-address".
 \
 \ 0 0 my-space h# 200.0010 + (phys.lo,mid,hi)

