
Open Firmware
Recommended Practice:

Interrupt Mapping

Version 0.9

Unapproved DRAFT

Published by the Open Firmware Working Group

This document is a voluntary-use recommended practice of the Open Firmware Working Group. The Open Firmware
Working Group is an ad hoc committee composed of individuals interested in Open Firmware as defined by IEEE
1275-1994, related standards, and their application to various computer systems.

The Open Firmware Working Group is involved both in IEEE sanctioned standards activities, whose final results are
published by IEEE, and in informal recommendations such as this, which are published on the Internet at:

http://playground.sun.com/1275

Membership in the Open Firmware Working Group is open to all interested parties. The working group meets at reg-
ular intervals at various locations. For more information send email to:

p1275-wg@risc.sps.mot.com

Revision History

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

7/12/96 Unapproved DRAFT 3

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

1. Introduction
This recommended practice defines a mapping mechanism between bus-specific interrupt values,
as reported via the "interrupts" property of the bus’s child nodes, and a system platform’s "na-
tive" interrupt facility.

1.1. Purpose

The base Open Firmware specification (IEEE Std 1275-1994) defines a generic bus-specific prop-
erty ("interrupts") that is used to report interrupt specifiers used by that bus’s devices. An
interrupt specifier usually has a component that represents a number that corresponds to an input
of an interrupt controller; it may also supply other information about the interrupt (e.g., an indica-
tion of whether the interupt is edge or level sensitive). Each bus binding to Open Firmware must
define the format and interpretation of its "interrupts" properties.

Platforms (e.g., CHRP) contain interrupt controllers to which interrupts from devices are wired.
In some cases, the interpretation of how an interrupt specifier relates to an interrupt controller is
simple. However, many platform architectures allow somewhat aribitrary "wiring" of interrupts.
The interrupt specifiers (i.e., the "interrupt" property values) do not contain enough informa-
tion in and of themselves to convey the information that an operating system needs to manage the
handling of interrupts.

This recommended practice defines an architecture that provides the additional platform-specific
information about interrupts and how they are wired.

1.2. Scope

2. References and Definitions

2.1. References

[1] IEEE Standard for Boot (Initialization Configuration) Firmware: Core Requirements and
Practices, published by IEEE as IEEE Std 1275-1994.

[2] PCI Local Bus Specification, Revision 2.1, published by the PCI Special Interest Group.

[3] PowerPC™ Microprocessor Common Hardware Reference Platform: A System Architecture,
published by Morgan Kaufmann.

[4] PowerPC™ Microprocessor Common Hardware Reference Platform (CHRP™) System bind-
ing to: IEEE Std 1275-1994, published by theOpen Firmware Working Group.

2.2. Definitions

3. The interrupt tree model
The model presented by this recommended practice is the representation of an interrupt tree that
describes how interrupts are wired, cascaded, etc. on a platform, and the manner in which a client
(e.g., an operating system) can use this information.

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

4 Unapproved DRAFT 712/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

The interrupt tree is represented by means of new properties, defined by this recommended prac-
tice, contained within the Open Firmware device tree for a platform. Note that the interrupt tree is
represented (and searched) by properties from leaf (device) nodes "upwards" towards the root of
the interrupt tree; this is unlike the device tree that has explicit links from the root "downwards"
towards leaf nodes.

In order to represent arbitrary platform wiring, where interrupts may be "distributed" amoung mul-
tiple interrupt controllers, the term interrupt tree is technically incorrect. In such cases, the struc-
ture is more correctly called an interrupt graph. However, since many platforms have a simpler
model, we will generically refer to the structure as a tree.

Each sub-tree of the interrupt tree represents interrupts within an interrupt domain that defines the
format and interpretation of "interrupts" properties for devices that are members of the do-
main. Since multiple busses may exist in a given platform, each of which has its own interrupt
domain, the interrupt tree consists of multiple interrupt domains. The root of the interrupt tree de-
fines the platform’s interrupt domain.

The base document defines the value of each "interrupts" property entry to be an interrupt
specifier. In practice, however, this value may have to be interpreted with respect to the device’s
unit address. For example, most PCI devices will have an "interrupts" value of 1, as required
by the [2]. However, the wiring of interrupts, at least for plug-in devices, is determined by the par-
ticular slot in which the device is plugged. On PCI, the slot is implied by the device’s unit address
(which contains the relevant device# information).

Because of this general coupling of unit address and interrupt specifier, the term unit interrupt
specifier is used when discussing a value that consists of the pair (unit address, interrupt specifier).
For nodes that represent devices, the number of cells to represent a unit interrupt specifier is the
sum of the "#address-cells" and "#interrupt-cells" properties; for nodes that do
not represent devices, there is no relevant "#address-cells" value, so that the number of cells
is solely determined by the "#interrupt-cells" value. The latter case exists due to the na-
ture of representing interrupt mapping outside the context of the normal device tree.

Each nexus in an interrupt tree represents where some interpretation and/or transformation of an
"interrupts" property value might be done. This interpretation is either direct because the
node is the interrupt tree’s root, it represents an interrupt controller, or it requires a “mapping” of
a unit interrupt specifier in one interrupt domain into a unit interrupt specifier in another domain.
In some cases (e.g., PCI-PCI bridge), the domains are essentially the same, but some mapping
might be necessary because of wiring.

The result of mapping an interrupt to the top of the interrupt tree results in a platform-specific val-
ue; the platform’s binding must define the interpretation of this value (e.g., source number and
sense for an Open PIC interrupt controller).

3.1. "#interrupt-cells" property

The assumption of the base document was that the interpretation of "interrupts" values, in-
cluding their format, was totally specified by a bus binding. However, this recommended practice
is designed to allow the traversal of the interrupt tree without such implicit knowledge. This is af-
forded by means of a new property ("#interrupt-cells") that explicitly defines the number
of cells required for the representation of a single interrupt specifier.

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

7/12/96 Unapproved DRAFT 5

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

3.2. "interrupt-parent" property

Since the interrupt tree may not match the physical bus tree (which is what the Open Firmware de-
vice tree represents), a new property ("interrupt-parent") is introduced that can denote the
interrupt tree hierarchy from device-tree nodes upwards within the interrupt tree.

If a device node does not specify an explicit interrupt parent (i.e., does not the "interrupt-
parent" property), and it is not an interrupt controller (i.e., it does not have an "interrupt-
controller" property), that node’s interrupt parent is assumed to be its device tree parent.

3.3. "interrupt-map" property

At any level in the interrupt tree, a mapping may need to take place between the child interrupt do-
main and the parent’s. This is represented by a new property called "interrupt-map". This
property defines the mapping of unit interrupt specifiers, as reported by the unit address and inter-
rupt specifiers of devices on a bus (as defined by that bus’s binding), or as transformed by the
"interrupt-map" property of the interrupt child of the node containing this property, to unit
interrupt specifiers in some other interrupt domain. The "interrupt-map" property can rep-
resent wiring conventions (e.g., PCI cards with on-board PCI-to-PCI bridges, or platform routing
of PCI interrupt pins) or might simply indicate a change of interrupt domain representation.

The "interrupt-map" property is a table, each entry of which consists of a child unit interrupt
specifier, an interrupt parent phandle and a parent unit interrupt specifier. The "interrupt-
map" table is looked up by matching a unit interrupt specifier (as masked by the "interrupt-
map-mask" defined below) against child components. When a match is found, the lookup pro-
ceeds up the interrupt tree by traversing upwards to the interrupt parent (as specified by the the in-
terrupt parent phandle component of the matching entry) with the parent unit interrupt specifier
component as the working interrupt value.

Note that since the interrupt parent of each entry may be a different interrupt tree node, with dif-
ferent values for "#address-cells" and "#interrupt-cells", the interrupt parent phan-
dle of each entry must be used to determine the number of cells in the parent unit interrupt specifier
component.

3.4. "interrupt-map-mask" property

When performing interrupt mapping via the "interrupt-map" property, not all of the bits of a
unit interrupt specifier may be relevant to the lookup. For example, a PCI unit interrupt specifier
consists of 4 cells (3 for the unit address and 1 for the interrupt specifier). However, only the de-
vice# component of the unit address is relevant. The "interrupt-map-mask" property de-
fines a mask that is applied to the unit address specifier before using it to look up values in the
"interrupt-map" table.

When the "interrupt-map-mask" property is present, the device’s unit interrupt specifier
(i.e., the concatenation of a device’s unit address and interrupt specifier) is the starting point for
generating a lookup value. The "interrupt-map-mask" property is a bit-mask that specifies
which bits are to be considered in the looking up of "interrupt-map" entries (i.e., the child
component). The unit interrupt specifier value is masked by ANDing each of its cells with the cor-
responding cell of the "interrupt-map-mask" value. The resulting value is matched against
child values in the "interrupt-map" table.

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

6 Unapproved DRAFT 712/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

3.5. "interrupt-controller" property

A sub-tree root is denoted by the presence of an "interrupt-controller" property. In gen-
eral, such a node represents where some sort of processing is required to respond to an interrupt.
The programming model of this interrupt controller is determined by the "name",
"device_type" and/or "compatible" properties of the node.

The root of the interrupt tree is determined when the traversal of the interrupt tree reaches an inter-
rupt controller node that does not have an explicit interrupt parent (i.e., does not have an "inter-
rupt-parent" property).

On some platforms, the interrupts from one interrupt controller are “cascaded” into another inter-
rupt controller higher up the interrupt tree. In these cases, the sub-tree’s interrupt controller node
will, itself, have an "interrupts" property that is interpreted in the interrupt domain of its in-
terrupt parent.

Some platforms may not have a single interrupt controller into which lower-level interrupt control-
lers are wired. E.g., independent interrupt controllers may report interrupts by sending interrupt
“messages” directly to processors. In this case, a single device tree node can still be defined as the
root of the platform’s interrupt tree in order to define the interrupt domain of the platform. I.e., the
interrupt tree root does not necessarily represent a physical interrupt controller.

4. Interrupt tree parent properties
Note: interrupt controllers that are cascaded are both the parents of its child nodes and
the child of an interrupt controller higher up the interrupt tree. Therefore, they will have
both parent and child properties.

The following properties are defined for interrupt nexus nodes by this recommended practice.

"#interrupt-cells" S

Standard property-name to define the number of cells in an interrupt specifier within an in-
terrupt domain.

prop-encoded-array:
An integer, encoded as with encode-int, that denotes the number of cells re-
quired to represent an interrupt specifier in its child nodes.

"interrupt-map-mask" S

Standard property-name to define the transformation of unit interrupt specifiers of child
nodes into values that correspond to child-interrupt entries of the "interrupt-map" ta-
ble entries.

prop-encoded-array:
An array of integers, each encoded as with encode-int.

The value of this property is a bit-mask that is applied to the concatenation of unit address
and interrupt specifier for a device. The number of cells of this property is the sum of the
values of the "#address-cells" and "#interrupt-cells" for this interrupt do-
main.

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

7/12/96 Unapproved DRAFT 7

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

"interrupt-map" S

Standard property-name to define interrupt specifier mappings.

prop-encoded-array:
Arbitrary number of interrupt mapping entries.

Each mapping entry consists of a 3-tuple of (child-interrupt, interrupt-parent, parent-inter-
rupt). The number of cells for the child-interrupt specifier is determined by the "#ad-
dress-cells" and "#interrupt-cells" property of this node. The number of
cells for the parent-interrupt value is determined by the "#address-cells" and
"#interrupt-cells" property values of this node’s interrupt-parent.

"interrupt-controller"

Standard property-name to indicate an interrupt (sub-)tree root.

prop-encoded-array.
None. The presence of this property indicates that this node represents an interrupt
controller.

The interpretation of an interrupt specifier within the interrupt domain defined by the in-
terrupt controller is defined by other properties of this node (e.g., its "device_type").

5. Interrupt tree child properties
The following property is defined for children of an interrupt nexus node.

Note: interrupt controllers that are cascaded are both the parents of its child nodes and
the child of an interrupt controller higher up the interrupt tree. Therefore, they will have
both parent and child properties.

"interrupt-parent" S

Standard property-name to denote the interrupt tree parent of this node.

prop-encoded-array:
An integer, encoded as with encode-int, that is the phandle of the interrupt nex-
us node that is the interrupt parent of the node.

The absence of an "interrupt-parent" property in an interrupt controller node (i.e., a node
that has the "interrupt-controller" property) indicates that this node represents the plat-
form’s interrupt tree root. The absence of an "interrupt-parent" property in a device node indicates
that the interrupt tree parent is the device tree parent of this node.

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

8 Unapproved DRAFT 712/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

6. Examples

6.1. PCI bus

The PCI binding defines an "interrupts" property to consist of one cell, which encodes wheth-
er the PCI device’s interrupt is connected to the PCI connector’s INTA#…INTD# pins, with values
1…4, respectively (assuming that the device is on a plug-in PCI card).

However, platforms typically wire the interrupts between connectors in a manner that attempts to
distribute the interrupts from multiple cards across different interrupt inputs to its interrupt control-
ler. An operating system does not obtain much information by just looking at the "interrupts"
property of a device.

The "interrupts" value is insufficient to be used as the child lookup value in an "inter-
rupt-map" table, since the device’s device number (which determines the card connector into
which the device is plugged) must be included in the mapping. So, for "pci" bus nodes, an "in-
terrupt-map-mask" property must be used. The addition of this property allows the device
number component of a device’s unit address to participate in the child interrupt specifier lookup
value.

The "interrupt-map-mask" value for "pci" would be (in hex):

The bits in the phys.hi component of the unit address mask masks off the device# field; the in-
terrupt specifier mask masks off the low-order 3 bits, which is sufficient to cover the values 1-4.

6.2. CHRP platform

This section gives an example of how a typical CHRP ([3],[4]) platform’s device tree would rep-
resent its interrupt tree. In order to understand the example, a basic introduction to the CHRP in-
terrupt controllers is presented below.

6.2.1. Open PIC interrupts

The CHRP platform defines the platforms primary interrupt controller to be the Open PIC. This
controller has a number of interrupts, each of which is represented by a source number and a sense.

Each Open PIC interrupt source is described by its source number that corresponds to a register
pair for that interrupt within the Open PIC. Various fields within the register pair allow the setting
of the interrupts priority, masking of the interrupt, etc. One important piece of information that
must be programmed for an interrupt source is its sense; i.e., whether the interrupt is considered
triggered by a positive edge or a low level.

Therefore, to represent interrupts within the domain of Open PIC, two cells are used. The first cell
represents the interrupt source number, while the second specifies whether the interrupt is positive
edge triggered (0) or active low level triggered (1).

6.2.2. ISA interrupt controller

In addition to the Open PIC, a CHRP platform also has a “legacy” ISA interrupt controller. This

0000F800 00000000 00000000 00000007
unit address mask interrupt specifier mask

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

7/12/96 Unapproved DRAFT 9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

controller (basically, an 8259) is cascaded into the Open PIC. I.e., when an ISA interrupt occurs,
an Open PIC interrupt will be generated. The processing of this interrupt will discover that the
source was from the ISA interrupt controller, which must then be accessed to determine the original
source of the interrupt.

The ISA binding defines the format of ISA interrupts, which consists of two cells, where the first
is the interrupt level (0…15) and the second cell indicates the type (e.g., positive edge).

6.2.3. CHRP platform example

The following diagram shows how the interrupt tree for a CHRP platform would look. This exam-
ple assumes that the Open PIC is contained within the "mac-io" chip. It is not important for this
example to understand the details of the "mac-io"; rather, it is the structure of the interrupt tree
that is being conveyed. The only important pieces of information about the "open-pic" device
within "mac-io" is that it represents interrupts with 2 cells per interrupt (indicated by its "#in-
terrupt-cells" property value) and that it is marked as an interrupt controller (by means of
the "interrupt-controller" property).

The PCI devices (mac-io,xyz,abc) have in implicit interrupt parent that is the "pci" host
bridge. The interrupt domain of PCI has interrupt specifiers that are 1 cell each, as indicated by
the "#interrupt-cells" value in the "pci" node. The mac-io node does not generate PCI
interrupts; it has no "interrupts" property. However, xyz and abc both generate interrupts
on INTA#, as indicated by their "interrupts" values of 1.

The "pci" node contains a "interrupt-map-mask" property that indicates that the lookup
of child interrupt specifiers is done by a combination of bits from their unit address and interrupt
specifiers. The number of cells of the "interrupt-map-mask" property is 4, which is the sum
of its "#address-cells" (3) and "#interrupt-cells" (1) properties.

xyz’s device# is 16, which corresponds to a phys.hi of 0x2000. The corresponding entry in

root

pci

isa

"interrupts"=5,1

"#interrupt-cells"=2

??

mac-io

open-pic "interrupt-controller"

"interrupt-parent"

"#interrupt-cells"=1

isa-pic

xyz "interrupts"=1

"#interrupt-cells"=2

"interrupt-map"
0x2800,0,0,1
0x2000,0,0,1

abc "interrupts"=1

"interrupt-controller"
"interrupt-parent"

16

17

"interrupt-map-mask"=0xF800,0,0,7

"#interrupt-cells"=2
"interrupts"=0,0

"#address-cells"=3

"#address-cells"=2

13,1
12,1

Interrupt Mapping Version 0.9 Open Firmware Recommended Practice

10 Unapproved DRAFT 712/96

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

the "interrupt-map" table indicates that its interrupt gets mapped to 13,1 (i.e., interrupt
source 13, active low level) in the "open-pic". Likewise, abc’s interrupt is mapped by masking
its unit address with 0xF800,0,0 giving 0x2800,0,0 and its interrupt specifier with 7 giving
a combined child lookup value of 0x2800,0,0,1. The corresponding entry in the "inter-
rupt-map" table denotes the "open-pic" node as its parent with a unit interrupt specifier of
12,1. Note that the "open-pic" node does not have a "#address-cells" property, so that
the number of cells for the parent unit interrupt specifiers is 2 (which is the value of its "#inter-
rupt-cells" property).

If the platform wired all of the INTA#s together, the interrupts would be shared. To represent this,
the "interrupt-map" table would show that the different PCI interrupts mapped to the same
interrupt specifier value. For example, the "interrupt-map" table above could have entries
for (0x2000,0,0,1 open-pic 12,1) and (0x2800,0,0,1 open-pic 12,1) indicating
that the INTA#s for both xyz and abc are shared.

The nodes under the "isa" bridge have interrupts encoded as specified by the ISA binding, which
states that "interrupts" properties consist of 2 cells, where the first cell is the interrupt number
(0…15) and the second cell indicates type (i.e., low level, rising edge, etc.); the "#interrupt-
cells" property of the bridge indicates the number of cells required to represent interrupts (i.e.,
2).

All of the ISA devices (with the exception of the "isa-pic", which is an interrupt controller) are
children of the "isa" node which becomes the default interrupt parent, since none of its children
have explicit "interrupt-parent" properties. Since an "interrupt-map" property is not
present in this node, no transformation of interrupt specifiers is made when traversing the interrupt
tree to its parent.

The interrupt parent of the "isa" node is the "isa-pic" interrupt controller. The presence of
the "interrupt-controller" property in the "isa-pic" node indicates that this is an in-
terrupt controller, thus defining an interrupt sub-tree root. Since it has an "interrupt-par-
ent" property, this interrupt controller is cascaded into its parent, which is the platform’s Open
PIC. The "isa-pic" interrupt is presented as interrupt source 0 (positive edge triggered) of the
"open-pic", as indicated by its "interrupts" value.

7. Interrupt mapping algortithm
The following psuedo-code shows the steps necessary to translate an interrupt specification from
a device into a platform specific value.

The psuedo-code is written at a very high level, with some liberty taken with details. The argu-
ments to the procedure are the device’s device-node pointer and its interrupt-specifier. Note that,
in general, separate calls to map each interrupt specifier would be required.

The code is basically a large loop that terminates when an interrupt-controller node is found that
has no interrupt-parent.

Open Firmware Recommended Practice Interrupt Mapping Version 0.9

7/12/96 Unapproved DRAFT 11

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

procedure map-interrupt(device-node, interrupt-specifier)

unit-address = valueof("reg"[0], device-node)
unit-interrupt-specifier = cat(unit-address, interrupt-specifier)
this-node = device-tree-parent(device-node)

begin \ loop up tree until we reach the root

if present("interrupt-controller", this-node)
if present("interrupt-parent", this-node)

parent-node = valueof("interrupt-parent", this-node)
if present("#address-cells", parent-node)

unit-address = valueof("reg"[0], this-node)
 else

unit-address = NULL
 then
interrupt-specifier = valueof("interrupts", this-node)
unit-interrupt-specifier = cat(unit-address, interrupt-specifier)
this-node = parent-node

 else \ this is the root node, we're done
return(unit-interrupt-specifier)

 then

else \ not "interrupt-controller"
if present("interrupt-map", this-node) \ we have a mapping to perform

if present("interrupt-map-mask", this-node)
mask = valueof("interrupt-map-mask")
unit-interrupt-specifier = unit-interrupt-specifier & mask

 then
init-decode-cells("interrupt-map", this-node)
found? = false
begin

child-specifier = decode-cells(sizeof(unit-interrupt-specifier))
parent-node = decode-cells(1)
if present("#address-cells", parent-node)

#cells = valueof("#address-cells", parent-node)
 else

#cells = 0
 then
#cells = #cells + valueof("#interrupt-cells", parent-node)
if child-specifier == unit-interrupt-specifier

found? = true
 else

dummy = decode-cells(#cells)
 then
until found?

interrupt-specifier = decode-cells(#cells)
if present("#address-cells", parent-node)

unit-address = valueof("reg"[0], this-node)
 else

unit-address = NULL
 then
unit-interrupt-specifier = cat(unit-address, interrupt-specifier)
this-node = parent-node

else \ no "interrupt-map" table
if present("interrupt-parent", this-node)

this-node = valueof("interrupt-parent", this-node)

else \ no "interrupt-parent" property
this-node = device-tree-parent(this-node)

then

again

